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Abstract from existing folding algorithms, which are typi-
cally based on Monte Carlo simulations, and can

How can proteins fold so quickly into their only sample one possible trajectory.
unique native structures? We show here Since we believe that there is much scope for
that there is a natural analogy between fyture work in applying statistical parsing tech-
parsing and the protein folding problem,  pjques to more detailed models of proteins, a sec-
and demonstrate that CKY can find the na-  ondary aim of this paper is to provide an introduc-
tive structures of a simplified lattice model  tjon to the research questions that arise in protein
of proteins with high accuracy. folding to the NLP community.

Proteins are essential components of the cells of
any living organism, and their biological function

In statistical parsing, the task is to find the most(€9- as enzymes that catalyze certain reactions) de-
likely syntactic structure for an input string of pends on their three-dimensional structure. How-
words, given a grammar and a probability model€ver, genes only specify the linear, sequence of the
over the analyses defined by that grammar. Pro@mino acids, and the ribosome (the cell's “pro-
teins are sequences of amino acids (polypeptid&ei” factory”) uses this information to assemble
chains) that form unique, sequence-specific thredhe polypeptide chain.  Under “natural” condi-
dimensional structures. The structure into which dions, these polypeptide chains then fold rapidly
particular protein folds has a lower energy than al@nd spontaneously into their unique final struc-
other possible structures. In protein structure pretures, or native states. Therefore, protein folding is
diction, the task is thus to find the Iowest—energyOften referred to as the second half of the genetic
physical structure for an input sequence of amingode, and the ability to predict the native state for
acids, given a representation of possible structured Primary sequence is great practical importance,
and a function that assigns an energy score to the§§- in drug design, or in our understanding of the
structures. There is therefore a natural analogf€nome.

between these two seemingly unrelated computa- Levinthal (1968), who was the first to frame the
tional problems. Based on this analogy, we profolding process as a search problem, showed that
pose an adaptation of the CKY chart parsing algofolding cannot be guided by a random, exhaus-

fithm to protein structure prediction, using a well- tiveé search: he argued that a chain of 150 amino
known simplified model of proteins as proof of &cids has on the order of 38 possible structures,

concept. but since folding takes only a few seconds, not
Models of protein folding additionally aim to More 18 of these structures can be searched. Un-

explain the process by which this structure for-der the assumption that a better understanding of
mation takes place, and their validity depends noth€ physical folding process will uliimately be re-
only on the accuracy of the predicted structuresduired to design accurate structure prediction tech-
but also on their physical plausibility. One com- niques, this observation has lead researchers to
mon proposal in the biophysical literature is thatlTy to identify sequence-specific pathways along
the folding process is hierarchical, and that foldingWhich folding may proceed or a general mecha-
routes are tree-shaped. CKY provides an explicif‘ism that makes this process so fast and reliable.
computational recipe to efficiently search (and re- Our aim of understanding the folding process is
turn) all possible folding routes. This sets it apartdifferent from a number of approaches which have

1 Introduction



used formal grammars to represent the structur@.2 Folding and thermodynamics

0; blo:oglzcgl(l)zrﬁ(;ecgles tsurhlzsgg-Né\r?' or prgge(;ZSAs first shown by Anfinsen (1973), protein folding
(Searls, » Durbin etat., » “hiang, )isareversible process: under “denaturing” condi-

Tlhese StudeeSth?.er '%/plcallﬁ focusetd ona S'ﬁec'f'f’lons, proteins typically unfold into a random state
classes of protein folds, and are hot generally ap(which still preserves the chain connectivity of the

plicable yet. Our folding algorithm restricts the primary amino acid sequence), and refold again

possible order of folding events, but places no “Xinto their unique native state if the natural folding

plicit restrictions on the structures it can account onditions are restored. Thus, all the information

for (gtther than th?st(ha lmposzdt:la y the;hs;?[aUaI .mO?e hat is necessary to determine the folded structure
used lo represent them, and those that aré IMpleg, ¢ 1, pe encoded in the primary sequence. This

by the hierarchical nature of the folding process). is analogous to natural language, where the mean-

ing of sentences such agrink coffee with milk
vs. | drink coffee with friends is also determined

2.1 Protein structure by their words.
Since folding occurs spontaneously, the native

The primary structure describes the linear se- tate has to be the th d icall timal
guence of amino acids that are linked via pep—Sae as to be he thermodynamically optima

tide bonds (and form the backbone of the polypep-StrUCture (under folding conditions), ie. the struc-

tide chain). Each amino acid has one side chairllure that results in the lowefe energy. The free

which branches off the backbone. Proteins CongnergyG —H —TSofa system depends on its en-

tain twenty different kinds of amino acids, which ;rgy H’t'ts entrodp¥§ (tthe amo?arlt 0;\ dlsordetr n
differ only in the size and chemical properties e system), and the temperatire A computa-

of their side-chains. One important distinction tional model therefore requires anergy function

on : g .
is that between hydrophobic (water-repelling) anaf]lp R —b> Rﬂ\:v h'ih mtapm ?menTlonalt_\éector:s_that
hydrophillic (polar) amino acids. escribe the structure of a polypeptide chain (eg.

Thesecondary structure refers to patterns of lo- " terms of the coordinates of its atoms) to the free

cal structures such ashelices of3-sheets, which energies of the corresponding structures. The na-

occur in many different folded structures. Thesetlve state is assumed to be the global minimum of

secondary structure elements often assemble intﬂ(;IIS function. This is again analogous to statisti-

largerdomains. Thetertiary structure represents cal parsing, where th_e correc_t analysis is a_s_sumed
the fully folded three-dimensional conformation o be the structure with the highest probability. 'F

of a single-chain protein, and typically consists ofthe case O.f proteins, we can use the laws of physms
multiple domains. Since proteins in the cell aretO determine the energy function, whereas in lan-

surrounded by water, hydrophobic side-chains argyage, 1the energies” have to be estimated from
typically inside this structure and in close con- COrPora- . .

tact to each other, forming Bydrophobic core The energy_H of a smgle protgln structure de-
whereas polar side-chains are more likely to be off ends essentially on the interactioner{iacts) be-

the surface of this structure. Thagdrophobic ef- :\r/]ve(te)n Sk'ge'Cha":]S and '?hn thet bonld aggles Zlong
fect is known to be the main driving force for the e backbone, whereas the entrépglso depends

folding process. on the surrounding solvent (water). It is this im-

Computational models of protein folding often pact onS which creates the hydrophobic effect.

use a very simplified representation of these struc[-:Or simplicity’s sake most computational models

tures. Ultimately, models which explicitly capture use anmplicit solvent energy function, which cap-

all atoms and their physical interactions are re-tures the hydrophobic effect by assuming that the

quired to study the folding of real proteins. How- contact energies between hydrophobic side-chains

. . are particularly favorable. Since bond angles alone
ever, since such models often require huge compu- P y 9

tational resources such as supercomputers or diggnnot capture the hydrophobic effect (Dill, 1999),

tributed systems, novel search strategies and othé'rmplncled models typically ignore their impact

general properties of the folding problem are usu-anOI represent the energy of a conformation only

ally first studied with coarse-grained, simplified ————— ) i

tations, such as the HP model (Lau an We note, however, that so-called “knowledge-based” or
re_presen all i tatistical potentials”, whose parameters are also egtth
Dill, 1989; Dill et al., 1995) used here. from known structures, are often used as well.

2 A brief introduction to protein folding



in terms of the side chain contacts. One par-
ticularly well-known example is the Miyazawa-

Jernigan (1996) energy function, a 20x20 matrix
of contact potentials whose parameters are esti-
mated from the Protein Data Bank, a database of
experimentally verified protein structures. These

simplified energy functions are therefore very sim-Figure 1: A conformation in the HP model with a

ilar to the bi-lexical dependency models that are‘Greek key”p-sheet (1-17) and-helix (17-24)
commonly used in statistical parsing.

It is this similarity between inter-residue con- _ o
tacts and word-word dependencies that grammafD€ assumption that folding is a greedy search —
based approaches (Searls, 2002) exploit. The gthat local moves in the landscape can successfully
of contacts for a given structure can be representetd€ntify the global minimum. Not all amino acid
as apolymer graph, although often only the edges Sequences have such landscapes, and in fact, most
of this graph are given in the form ofantact map random amino acid sequences are unlikely to fold
(a triangular matrix whose enti@; corresponds into a unique structure. This is again similar to
to the contact between thi¢éh and jth residue). language, where random sequences of words are
The edges in this graph are inherently undirected@!S0 unlikely to form a grammatical sentence.
In a-helices and paralleB-sheets, the edges are Computational simulations of the folding pro-
crossing. Although grammars that capture the “dec€Ss are typically based on Monte Carlo or re-
pendencies” in specific kinds of protein structures@ted techniques. These approaches require an en-
have been written (Chiang, 2004), it is at presenfrdy function as well as a “move set” (a set of
unclear whether such an approach can be gener,ules which despribe how one conformgtion can
alized. The difficulty for all approximations to be transformed into another). However, since each
structural representations (grammar-based or ot{dividual simulation can only capture the folding
erwise) lies in accounting faexcluded volume or  trajectory of a single chain, many runs are typi-
steric clashes (the fact that no two amino acids can cally required to sample the entire landscape to a
occupy the same point in space). sufficient degree.

The so-called “New View” of protein folding
(Dill and Chan, 1997) assumes that the speed o -3 The HP model
the folding process can be explained by the shapéhe HP model (Lau and Dill, 1989; Dill et al.,
of the energy landscape (ie. the surface of the 1995)is one of the most simplified protein models.
energy function for all possible structures of aHere, proteins are short chains that are placed onto
given chain). Folding is fastest if the landscaped 2-dimensional square lattice (Figure 1). Each HP
is funnel-shaped (ie. has no local minima, andsequence consists of two kinds of monomers, hy-
there is a direct downward path from all points todrophobic (H) and polar (P), and each monomer
the native state). If the energy landscape is rugget$ represented as a single bead on a lattice site.
(ie. has many local minima) or golf-course shapedThe chain is placed onto the lattice such that each
(ie. all structures except for the native state havéattice site is occupied by at most one bead, and
the same, high, energy), folding is slow. In thebeads that are adjacent in the sequence are on ad-
first case, energetic barriers slow down the foldjacent lattice sites, so that it forms a self-avoiding
ing process: the chain gets stuck in local minimawalk (SAW) on the lattice. Such lattice models
or kinetic traps. Such traps correspond to strucare commonly used in polymer physics, since they
tures that contain “incorrect” (non-native) contactscapture excluded volume effects, and the proper-
which have to be broken (thus increasing the enties of such SAWs on different types of lattices are
ergy) before the native state can be reached. 18 well-studied problem in combinatorics.
the case of a plateau in the landscape, the searchEach distinct SAW corresponds to one “con-
for the native state is slowed down by entropicformation”, or possible structure. The energy of
barriers, i.e. a situation where a large number oft conformation is determined by the contacts be-
equivalent structures with the same energy are agween two H monomersand j that are not adja-

cessible. Implicit in the landscape perspective igent in the sequence. Contacts arise if the chain
is in a configuration such that monomerand j
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Figure 2: Trees describe folding routes. Tree cuts desthibstate of the chain at any point in time.

(i < j) are located on adjacent lattice sites. EaclB.2 Folding routes as trees

HH-contact contributes-1 to the energy. The en- Folding routes describe how individual chains

ergy I.E(C) of conformanong with n HH con- move from the unfolded to the native state. If
tacts is therefore-n. We consider only sequences . S .
protein folding is a recursive, parallel process,

that have a single lowest-energy conformation (naés assumed here, folding routes are trees whose

tive state), since these are the most prot«s\ln-hkereauc nodes represent substrings of the primary

Al unique-folding sequences up to a length Ofsequence, and whose root represents the folded

25 monomers and their natives states are knOWQtructure of the entire chain (Figure 2). The nodes

(Irback and Troein, 2002). In our experiments, we. .
. . " "in between the leaves and root correspond to chain
will concentrate on the set of all unique-folding .
. segments whose length lies between that of the
HP sequences of length 20, of which there are ortest initial segments and the final complete
24,900. These 20-residue chains have 41,889,5 . . L ,
chain. Folding begins independently and simulta-

viable conformations on the 2D lattice.
Despite its simplicity. the HP model is com neously at each of the leaves, and moves toward
P plicity, the root. Each internal node of a folding route

monly used to test protein folding algorithms, tfree represents a set of partially folded confor-

since it captures essential physical properties Ofhations of the corresponding chain segment that

proteins such as chain connectivity and the hy- . :
. : o is found by combining conformations of smaller
drophobic effect, and since finding the lowest en-

ergy conformation is an NP-complete problempieces formed in previous steps.
. i . Figure 2 also shows that the state of the entire
(Crescenzi et al.,, 1998; Berger and Leighton, g

. : chain at different stages during the folding pro-
1998), as in real proteins. L h
cess is given by a horizontal treecut, a set of nodes

3 Folding as hierarchical search whose segments span the entire chain, but do not
_ _ _ . overlap.
3.1 Evidence for hierarchical folding Because we assume that folding routes are trees,

There is substantial evidence in the experi-contacts between two adjacent segmektndB
mental literature (starting with Crippen (1978) can only be formed wheA andB are combined to
and Rose (1979); but see also Baldwin andorm their parentC. Our assumption also implies
Rose (1999a; 1999b)) that the folding process ishat in a sequencevw, contacts betweemandw
guided by a hierarchical search strategy, wherebgr betweernv andu have to be formed before or at
folding begins simultaneously and independentlythe same time as contacts betweemndw.

in different parts of the chain, leading initially = Trees provide a unified representation of the
to the formation of local structures which either growth and assembly process assumed by hierar-
grow larger, or assemble with other local struc-chical folding theories: A growth step corresponds
ture. Folded protein structures can typically beto a local tree in which a non-terminal node and
recursively decomposed, and in many proteinsa leaf node are combined, whereas an assembly
small, contiguous parts of the chain form near-step corresponds to a local tree in which two non-
native structures during early stages of the foldingerminal nodes are combined.

process. On the theoretical side, Dill et al. (1993) Folding route trees thus play a very different
demonstrate that local contacts are easiest to formole from the traditional phrase structure trees
when the chain is unfolded, and facilitate the sub4in natural language, since they represent merely
sequent formation of less local contacts, leadinghe process by which the desired structure was
to a “zipping” effect, where small, local structures formed, and not the structure itself. This is more
grow larger before being assembled. akin to the role of syntactic derivations in for-



malisms such as CCG (Steedman, 2000): in CCGhe folding trees. Other regimes are also conceiv-
syntactic derivation trees do not constitute an auable. Since no adjaceit monomers can form a
tonomous level of representation, but only specifycontact, up to three consecutis may be kept in
how the semantic interpretation of a sentence ishe same substring. While this typically leads to
constructed. We will see below that proteins, likean increase in efficiency, it comes at a slight cost in
sentences in CCG, have a “flexible” constituentaccuracy with our current pruning strategy. Long
structure, with multiple folding routes leading to substrings oPs could also be treated as separate
the native state. substrings in a manner similar ®pre- and suf-

. ) ) fixes.
4 Protein folding as chart parsing

Here, we show how the CKY algorithm (Kasami, Chart items The items in our chart represent
1965; Younger, 1967) can be adapted to proteirthe lowest-energy conformations that are found
folding in the HP model. Although we use a for the corresponding substring. Unlike in stan-
simplified lattice model, our technique is suffi- dard CKY, each cell contains the full set of struc-
ciently general to be applicable to other representures for its substring (which leads to the exponen-
tations. As in standard CKY, structures for sub-tial worst-case behavior observed above). There-
stringsi..j are formed from pairs of previously fore, the chart does not need to be unpacked to
identified structures for substringsk andk+1..j,  obtain the desired output structure. Backpoint-
and, as in standard probabilistic CKY, we use aers from items inchart[i][j] to pairs of items in
pruning strategy akin to Viterbi search, and onlychart[i][k] andchart[k+ 1][j] represent the folding
retain the lowest energy structures in each cell. route trees, and thus record the history of the fold-
The complexity of standard CKY i®(n®|G|),  ing process. Each item can only have at mjosi
wheren is the length of the input string ané|  pairs of backpointers, since it can only be con-
the “size” of the grammar. Since we do not havestructed from one pair of conformations in each
a grammar with a fixed set of nonterminals, whichpair of cells.
would allow us to compactly represent all possible
structures for a given substring, the constant factofjtializing the chart  The chart is initialized by

|G is replaced by an exponential factd, repre- fijling the cellschart]i][i] which correspond to the
senting the number of possible conformations of gt supstring. Since each initial substring has at
chain of lengthn. Our pruning strategy captures most one H, all its conformations are equivalent
the physical assumption that only locally optimal (and the size othart[i][i] is thus exponential in

structures are stable enough not to unfold beforgne |ength of its substring). This exhaustive enu-
further contacts can be made. With a larger set ofyeration can be performed off-line.

amino acids and a corresponding energy function,
a beam search strate ith threshold pruning) _. . . :
9y (wi . prun g)IFnImg the chart As in standard CKY, the in-
may be more appropriate. Pruning is an essentle% | cellschartlill filled b bining th
part of our algorithm — without it, it would amount ernal cellschart]i][j] are filled by combining the

. . 3\ g entries of cellschart[i][k] and chart[k+1][j] for
to exhaustive enumeration, repeate@®) times. | <k < j. Two conformations & chart[i][k| and

The chart Since only HH contacts contribute r € chart[i][k] are combined like two pieces of a
to the energy of a conformation, the dimensiongigsaw puzzle where the only constraint is that two
of the chart are determined by the numbertbf pieces may not overlap. That is, we append all (ro-
monomers in the sequence. We segment evemational and translational) variants iofo any free
HP sequence intb substrings that contain one H site adjacent to the site ¢ last monomer, and
each (splitting long substrings &s in the mid- add all resulting viable conformations(ie. those
dle). For efficiency reasons, non-empty prefixesvhere no two monomers occupy the same lattice
or suffixes ofP monomers (eg. in sequences ofsite) intochart[i][]].

the form PPPH.....HP) may also be split off as  With our current pruning strategy, only the
additional substrings (and are then only combinedowest-energy conformations in each cell are kept.
with the rest of the chain once the substring from CKY terminates when the top celthart[1][n],

the first to the lasti monomer has been analyzed). is filled. It has succeeded if the top cell contains an
These substrings correspond to the leaf nodes iibeem with only one conformation, the native state.
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Figure 3: The amount of search depends on the shape of the &tergy landscapes”

Contact maps as node labels We have also de- 5.2 The chart landscape

;/'elop_ed a Vﬁ”ant of th'sd e:lgorltk;m tvvhere theten'?ince we employ a beam search strategy, all con-
ries in a cell correspond to contact maps (sets %ormations that remain in a cell after pruning have

HH-contacts), and where each entry correspondﬁ1e same energy level. Therefore, CKY identi-
in turn to the set of conformations that correspond§ieS the substring ochart energy landscape of

to this contact map. Conformations that have the,, ., sequence, a functidti, j) which maps sub-

same contact map are assumed to be phys"C"’“Lytrings(i, j) to their lowest accessible energy level.

equivalent. While the number of possible contaclg; o the energy of a conformation in the HP

maps is also exponential in the length of the sub-moolel is determined by the number of HH con-
string (Vendruscolo et al., 1999), it is obviously tacts, f(i, ) < f(i', ') for all i’ <i,j < j'. That

much smaller than thg number of actual conformais’ unlike standard energy functiont has no lo-
tions. In our current implementation, the amount

cal minima. As shown in figure 3 (where the size

of search required is identical in both variants; butOf the cells is adjusted to reflect the length of the

in extending this approach beyond the lattice, itcorresponding substrings), the “slope” bileter-

may be possible to use a more e_:fflc_lent SampllnQnines the amount of search required to fold a se-
app_roach to speed up the combination of Confor'quence. Sequence that require little search have a
mations in two cells. steep funnel, whereas sequence that require a lot
of search have a flat, golf-course like landscape.
HH contacts impoose constraints on the number of
conformations, therefore a cell with lower energy
will also have fewer entries than a cell with higher
energy that spans a string of the same length. This
CKY finds the is analogous to standard energy landscapes (Dill
and Chan, 1997), where a plateau corrresponds to
anentropic barrier, which requires a lot of search.

5 Results

5.1 Folding accuracy

With our current pruning strategy,
native state of 96.7% of all 24,900 unique-folding
20mers, confirming our hypothesis that the hierar
chical greedy search that is implemented in CKY

is a viable strategy. With exhaustive search, the3 The
“conformational search number” (CSN), ie. total We can extract the set of all folding routes
number of conformations searched per sequendgll trees which lead to the native state) from
(summed over all cells), corresponds on average tthe chart, visualize the ensemble-averaged “con-
2.5% of all possible conformations for a sequencestituent structure” of a chain by coloring each cell
of length 20. We have also explored restrictionsin the (adjusted) chart by the posterior probabil-
where an initial contact is only allowed betweenity that native routes go through it (here black:p=1
H monomers whose distance along the backbonand white:p=0). A probability of one corresponds
is smaller than or equal to a given threshAld=or  to a structure that has to be formed by all routes,
A =7, accuracy drops slightly to 95.2%, but thewhereas a probability of zero represents a set of
number of searched conformations corresponds tmisfolded structures. Misfolding arises if the low-
only 1% of the search space. est energy structures contain non-native (incor-

“constituent structure” of proteins
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Figure 4: CKY identifies the “constituent structures” of f@ias, which correspond to their folding routes

rect) contacts. Since these contacts have to be brphrases might make sense, or to find partially sta-
ken before the native state can be reached, requible peptide structures) and then either: (a) ‘grows’
ing an uphill step in energy, they corresponate one substring into a larger substring, or (b) ‘as-
ergetic barriers. sembles’ two substrings together into a larger sub-
Figure 4 shows the “constituent structure” of string. More interestingly, in the protein folding
the conformation shown in Figure 1, and one ofcase, such recursive hierarchical search strategies,
its corresponding folding routes. Many sequencesvhich imply tree-shaped folding routes, have been
show very specific patterns of folding routes, as inpostulated independently for biological and bio-
the example given here, where faestrands 7-10 physical reasons. This may indicate a deeper, nat-
and 11-16 and the-helix from 17-24 “grow” onto  ural connection between these two processes.
the hairpin from 1-5. Given that hierarchical search strategies for pro-
A number of proteins are known to form so- tein folding have been proposed in the biologi-
called “foldons” (Maity et al., 2005). These are cal literature, our primary interest here has been
substrings of the chain which can be found in theirthe question of whether a greedy, hierarchical
near-native conformation before the entire chain isearch as implemented in CKY is able to iden-
completely folded. In our parsing perspective ontify the native state of proteins in the HP model.
protein folding, these foldons correspond to nodeg he research presented here aims to verify these
that are shared by sufficiently many native routegredictions with an explicit computational model.

that they can be detected experimentally. Therefore, we were less concerned with improv-
ing efficiency, and more with the properties of this
6 Conclusions and future work algorithm, which we consider a baseline method

upon which more sophisticated techniques such as
This paper has demonstrated that an adaptatiopest-first parsing (Caraballo and Charniak, 1998)
of the CKY chart parsing algorithm can be suc-or A* search (Klein and Manning, 2003) may well
ccessfully applied to protein folding in the 2D pe able to improve.
HP model, a commonly used simplified lattice We also plan to adapt this technique to other,
model which captures essential physical and commore realistic, representations of proteins, and to
putational properties of the real folding processlonger sequences. For longer sequences, we will
Both syntactic parsing and protein folding algo-take advantage of the fact that CKY is easily paral-
rithms search for the globally optimal structure |elizable, since any operation which combines the
for a given input string. And any given sentenceentries of two cellghart[i][k] andchart[k+1][j] is
has a large number of possible interpretations, justompletely independent of other parts of the chart.
as any amino acid sequence has an astronomical If the routes by which proteins fold really are
number of possible spatial conformations. Theretrees, a dynamic programming technique such as
fore it is not surprising if similar techniques can CKY is inherently suited to model this process,
be applied to both tasks. In both cases, it seemsince it is the most efficient way to search all pos-
to be possible to exploit locally available infor- sible trees. This distinguishes it from more estab-
mation with a greedy, hierarchical search strategylished techniques such as Monte Carlo, which can
which starts with local, independent searches foobnly follow one trajectory at a time, and require
small substrings (to first determine which small



multiple runs to sample the underlying landscapéesordon M. Crippen. 1978. The tree structural organization
to a sufficient degree. What CKY by itself does of proteins.J. Mol. Biol., 126(3):315-32, December.
not give us is an accurate prediction of the rateen A. Dill and Hue Sun Chan. 1997. From Levinthal to
that govern the folding process, including misfold-  pathways to funnelsNature Sructural Biology, 4(1):10—
ing and unfolding events. However, we believe 19 Januan.
that it is possible to obtain this information from Ken A. Dill, Klaus M. Fiebig, and Hue Sun Chan. 1993. Co-
the chart by extracting all tree cuts (which cor- operativity in protein folding kineticsProc. Natl. Acad.

) , Sci., 90:1942-1946, March.
resond to the states of the chain at different stages
during the folding process) and calculating foldingKen A. Dill, Sarina Bromberg, Kaizhi Yue, Klaus M. Fiebig,
rates between them David P. Yee, Paul D. Thomas, and Hue Sun Chan. 1995.

. L Principles of protein folding — a perspective from simple
Our work is only the beginning of a larger re-  exact modelsProtein Science, 4:561-602.

search program: eventually we would like to be . . . .
. Ken A. Dill. 1999. Polymer principles and protein folding.
able to model the folding process of real pro- protein Science, 8:1166-1180.

teins. One aim of this paper was therefore to point

TR :«ti_Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme
out the fundamental similarities between statisti-" . hicon ™ 1998 Biological sequence analysis. Cam-

cal parsing and protein folding. We believe that bridge University Press.
this is a fertile area for future work where other

. . Anders Irback and Carl Troein. 2002. Enumerating design-
natural language processing techniques may also ing sequences in the HP modelournal of Biological

prove to be useful. Physics, 28:1-15.
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